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Motivation

The discrete form F=ma has strong implications 
on the representation of energetics and vortex 
dynamics.

Getting F=ma “correct” is a prerequisite to a 
robust model of geophysical fluid dynamics.



Mass, Momentum and Circulation developed in a 
Lagrangian reference frame.

The four common ways to express F=ma 
(advective, conservative, invariant, vor/div -- 
each to be defined) and their respective 
advantages and disadvantages.

Vortex dynamics and F=ma in a discrete system, 
constructing a discrete analog to Kelvin’s 
Circulation Theorem.

Outline
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Our Lagrangian reference frame defined.

Define a volume of fluid (V) composed of a set of particles (X) 
enclosed (at all times) by a surface (S). By construction, the amount
of mass within V is invariant with time.

V(t)

V (t1)

V (t2 )

X

X 
u



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

Our Lagrangian reference frame defined.

Define a volume of fluid (V) composed of a set of particles (X) 
enclosed (at all times) by a surface (S). By construction, the amount
of mass within V is invariant with time.

V(t)

V (t1)

V (t2 )

X

X 
u

M = ρ x,t⎛
⎝

⎞
⎠dV

V(t)
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

Our Lagrangian reference frame defined.

Define a volume of fluid (V) composed of a set of particles (X) 
enclosed (at all times) by a surface (S). By construction, the amount
of mass within V is invariant with time.

V(t)

V (t1)

V (t2 )

X

X 
u

M = ρ x,t⎛
⎝

⎞
⎠dV

V(t)
∫

So and this defines the material derivative.DM
Dt =0



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

Our Lagrangian reference frame defined.

Define a volume of fluid (V) composed of a set of particles (X) 
enclosed (at all times) by a surface (S). By construction, the amount
of mass within V is invariant with time.

V(t)
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X

X 
u

M = ρ x,t⎛
⎝

⎞
⎠dV

V(t)
∫

So and this defines the material derivative.DM
Dt =0

where is the particle velocity.
 

D{}
Dt fluid

particle

= ∂{}
∂t

+

ui∇{}

 
u= DXDt
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Conservation of Mass

V (t1)

X

V (t2 )

X

While mass is constant within our Lagrangian control volume, the volume 
is not (in general) similarly constrained.

DM
Dt = DDt ρ x,t⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
dV

V(t)
∫

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥
⎥
⎥

=0

The material derivative is tracking the 
same set of particles that define      .V(t)
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Dρ
Dt +ρ∇iu

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥V(t)

∫ dV =0

Moving the material derivative inside
the volume integral (via Reynold’s 
transport theorem on next slide), we 
find,
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Reynold’s Transport Theorem
a foundation of finite-volume methods

 

D
Dt FdV
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Reynold’s Transport Theorem
a foundation of finite-volume methods

The time rate of change of 
a quantity moving with the 
Lagrangian velocity defined 
within a volume V.

The instantaneous time 
rate of change of that 
quantity within the 
volume.

The net flux of that 
quantity across the 
surface bounding the 
volume.

= +
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RTT and Control Volumes

 

D
Dt ρdV

V
∫

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
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= ∂ρ
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V
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ui
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S
∫ =0

This allows us to recast statements most naturally expressed in a 
Lagrangian reference frame in an Eulerian (fixed) reference frame.

(note: integration is over over the 
blue  domain. red line indicates 

how the square domain deforms.)
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Our statement of F=ma for a material volume
The extrinsic quantity is momentum 

 

P= ρ


u dV

V(t)
∫ and the statement of Newton’s

2nd law for the volume of fluid is,

 
P(t1)

 
P(t2)

 

D

P
Dt =

D
Dt ρ


u dV

V(t)
∫

⎡

⎣

⎢
⎢
⎢
⎢
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⎦

⎥
⎥
⎥
⎥

= FB dV
V(t)
∫ + FS dS

S(t)
∫

FS

FS is the force per unit area acting
on the surface S(t)

is the force per unit volume acting
within the volume V(t)
FB

FS

FB

FB
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RTT (and mass conservation) applied to F=ma
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S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ =


f × ρ

udV

V
∫ + p


ndS

S
∫ + ρ


ni

TdS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

change in momentum
within volume V.

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ =


f × ρ

udV

V
∫ + p


ndS

S
∫ + ρ


ni

TdS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

flux of momentum
across surface

bounding volume V.

change in momentum
within volume V.

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ =


f × ρ

udV

V
∫ + p


ndS

S
∫ + ρ


ni

TdS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

flux of momentum
across surface

bounding volume V.

change in momentum
within volume V.

(apparent) body force
due to expressing

momentum equation in 
a rotating reference frame.

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ =


f × ρ

udV

V
∫ + p


ndS

S
∫ + ρ


ni

TdS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma

 

D

P
Dt = ρD

u
Dt dVV

∫ = FB dV
V
∫ + FS dS

S
∫

flux of momentum
across surface

bounding volume V.

pressure force
acting on surface
bounding volume V.

change in momentum
within volume V.

(apparent) body force
due to expressing

momentum equation in 
a rotating reference frame.

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = FB dV

V
∫ + FS dS

S
∫

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ =


f × ρ

udV

V
∫ + p


ndS

S
∫ + ρ


ni

TdS

S
∫



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

RTT (and mass conservation) applied to F=ma
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Taking the limit of V going to zero,
a point-wise perspective of F=ma.
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Taking the limit of V going to zero,
a point-wise perspective of F=ma.

Let the volume shrink to zero.
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Taking the limit of V going to zero,
a point-wise perspective of F=ma.
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A control volume perspective of F=ma
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A control volume perspective of F=ma
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A control volume perspective of F=ma

 

∂ ρ

u( )

∂t

 

f × ρ

u

 

∂ ρ

u( )

∂t
dV + ρ


u( )

ui

ndS

S
∫

V
∫ = −


f × ρ

udV

V
∫ − p


ndS

S
∫ + ρ


ni

TdS

S
∫

 

ρ

u( )  


ui

n



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

A control volume perspective of F=ma
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A control volume perspective of F=ma
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One aspect of F=ma that is of particular interest is the 
implied vorticity/circulation/angular momentum budget.

Vorticity field at day 10
Shallow-water equation.
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One aspect of F=ma that is of particular interest is the 
implied vorticity/circulation/angular momentum budget.

Why?
1) Often does not involve pressure.

2) Strongly influences long-time 
dynamics.

3) Explains a significant fraction
of velocity field. 

4) Critical for robustness of 
numerical models.

Vorticity field at day 10
Shallow-water equation.
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One aspect of F=ma that is of particular interest is the 
implied vorticity/circulation/angular momentum budget.

Why?
1) Often does not involve pressure.

2) Strongly influences long-time 
dynamics.

3) Explains a significant fraction
of velocity field. 

4) Critical for robustness of 
numerical models.

Vorticity field at day 10
Shallow-water equation.

For clarity, let’s limit our analysis to flow in the tangent plane, i.e. 
“horizontal” flow and the vertical component of vorticity. Nothing 
precludes the extension to full 3D flows.
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Circulation defined ....

 

Γc(t)= 
u

c(t)
∫ id


s

c(t)       is a material loop
(moving with fluid)

 
d

s  is an infinitesimal
section of c(t)

 

u    is evaluated

along the loop.
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Circulation defined ....

 

Γc(t)= 
u

c(t)
∫ id


s

c(t)       is a material loop
(moving with fluid)

 
d

s  is an infinitesimal
section of c(t)

 

u    is evaluated

along the loop.

 

Γc(t)= 
u

c(t)
∫ id
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Γc(t)= 
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∫ id


s=ωdA, where    is the area-mean vorticity.ω

 

Γc(t)= 
u

c(t)
∫ id


s=ut dL , where    is the contour-mean velocity.ut
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Evolution of Circulation

c(t)       is a material loop
(moving with fluid)
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Dt = D


u
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⎤

⎦
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⎥

c(t)
∫ id
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(fluid is barotropic)



NCAR Summer Colloquium on Dynamical Cores, June 2-13, 2008

Evolution of Circulation

c(t)       is a material loop
(moving with fluid)

 

DΓc
Dt = D


u

Dtc(t)
∫ id


s

= 1
ρ −

f × ρ

u−∇p+ρ∇i


T⎛

⎝⎜
⎞
⎠⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

c(t)
∫ id


s

 
∇i

T =0

ρ= ρ(p)
 

1
ρ∇p

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

c(t)
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s=0

Assume:
(ignore viscosity)

(fluid is barotropic)
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Example of       

 

f = ( f0 +βy)


k, β >0

y

 
u=uo


j

 
−

f ×

u relatively large

 
−

f ×

u relatively small

The tendency in circulation and mean tangential velocity is CCW.
The tendency in mean relative vorticity is negative.

 

DΓc
Dt = −


f ×

u

c(t)
∫ id


s

Transport into region
of higher Coriolis parameter
induces a mean CCW tendency
on the material contour.
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Applying RTT to Circulation

 

DΓc
Dt =

D
Dt ω dA

A
∫ = ∂ω

∂t
+∇i(ω


u)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
dA

A
∫ = − f


k×

u

c
∫ id


s

∂ω
∂t

 

ui

n

f +ω
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Applying RTT to Circulation

 

DΓc
Dt =

D
Dt ω dA

A
∫ = ∂ω

∂t
+∇i(ω


u)

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
dA

A
∫ = − f


k×

u

c
∫ id


s

∂ω
∂t

 

ui

n

f +ωWithin the control
volume we can think
of tracking the time
tendency of any of the
following: relative
vorticity, absolute
vorticity, circulation
or even contour-mean
tangential velocity.

Flux-form: What
goes out of one 
cells goes into its
neighbor. 
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Summary of Evolution Equations
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⎢
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f × ρ
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∫ + ρ
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TdS
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∫
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Transport Theorem we recast that statement in a fixed 
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reference frame conducive to present-day numerical methods.

 

D
Dt

ρdV
V
∫
⎡

⎣
⎢

⎤

⎦
⎥ =

∂ρ
∂t
dV

V
∫ + ρ


ui

ndS

S
∫ = 0

 

D
Dt

ωdA
A
∫
⎡

⎣
⎢

⎤

⎦
⎥ =

∂ω
∂t

⎡
⎣⎢

⎤
⎦⎥
dA + ω


ui

nd

s

c
∫

A
∫ = − f


k ×

u

c
∫ id


s

The momentum equation has various forms, each with its own 
advantages and disadvantages, let’s take a closer look.
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The various “flavors” of F=ma are all 
equivalent when expressed in their 

continuous form. The advantages and 
disadvantages are in the context of their 

discrete analogs. 
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The advective form of the momentum equation
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+
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u = −


f ×

u −
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The advective form of the momentum equation
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u −
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ρ
∇p +∇i



T

Integrate along a particle path:
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f ×

u −

1
ρ
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⎡

⎣
⎢

⎤

⎦
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tend∫
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position at tbegin.

evaluate RHS
along particle
trajectory.
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The advective form of the momentum equation
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∂t

+

ui∇

u = −


f ×

u −

1
ρ
∇p +∇i



T

Advantages:
Most natural expression of
particle motion. 

Disadvantages:
Evaluation of integral along
particle path is challenging.
No solid handle on vorticity
dynamics, including grad(p).

•

•

•

u(tend)

interpolate to
find u(tbegin)

integrate backwards
in time to find particle

position at tbegin.

evaluate RHS
along particle
trajectory.

Integrate along a particle path:
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The flux form of the momentum equation
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The flux form of the momentum equation

 

∂ ρ

u( )

∂t

 

f × ρ

u

 

ui

n

 

ρ

u( )

 
ρ

ni

T

 
−

n p

Disadvantages:
Line integral of tendency terms around 
control volume is not the circulation.
Coriolis force is a volume integral whereas 
the pressure force is a surface integral.

•

•

Advantages:
Most natural expression of momentum 
equation for a control volume approach.
Momentum equation is closely linked
to mass equation (as it should be).
As vertical layer thickness goes to zero,
momentum naturally goes to zero.

•

•

•
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The invariant form of the momentum equation

Disadvantages:
It is my favorite form, so there are no disadvantages!•

Advantages:
Most natural expression of momentum equation at a fixed-
point (finite-difference).
Equation contains the two primary derived quantities we 
are interested in (vorticity and kinetic energy).
Line integral of tendency terms around a closed contour is 
the circulation.
Rather difficult nonlinear advection term is recast as a 
cross-product and a gradient.

•

•

•

•

 

∂

u
∂t

+

ω +

f( ) ×

u = −

1
ρ
∇p −

1
2
∇

u 2 +∇i



T

 
ui∇

u =

ω ×

u +

1
2
∇

u 2using[ ]
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The vor/div form of the momentum equation
If vorticity is what we are interested in, why not just 
exchange momentum for its vorticity and divergence? 

Advantages:
Direct handle on the evolution of vorticity and divergence.

Disadvantages: 
1st order spatial derivatives are now 2nd order derivatives.
Additional boundary conditions required to constrain higher derivs
Invert elliptic equations to determine velocity.

More fully discussed by Dave Randall on Thursday.
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The vor/div form of the momentum equation
If vorticity is what we are interested in, why not just 
exchange momentum for its vorticity and divergence? 

Advantages:
Direct handle on the evolution of vorticity and divergence.
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1st order spatial derivatives are now 2nd order derivatives.
Additional boundary conditions required to constrain higher derivs
Invert elliptic equations to determine velocity.
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An analysis of F=ma in a discrete setting.
A discrete system implies a single form of the 
continuous equation, a mesh and a method.

We have (at least):
4 forms of F=ma: advect, flux, invariant, vor/div
3 classes of meshes: quads, triangles, hexagons.
6 methods (just in finite volume): A, B, C, D, E, Z 

We need to choose carefully .... 

My choice: invariant, C-grid, any locally-orthogonal mesh.

Why? This combination provides precise control of vortex 
dynamics and energetics, results in acceptable gravity wave 
simulation and is applicable to any locally-orthogonal mesh 
(either quasi-uniform or variable resolution).
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What does it mean to be locally-orthogonal?
The dot product of vectors tangent to relevant lines segments is zero.

Delaunay Triangulation Cubed Sphere Voronoi Diagram

Stretched, Tri-pole grid Latitude-Longitude

This captures a wide cross-section of meshes.

What follows is applicable of any of these meshes.
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What is the C-grid staggering?

mass point

northward velocity point

eastward velocity point

vorticity point

Define all prognostic velocity 
points as N (as in Normal) to a 
mass cell edge. In order to 
construct a full velocity vector, 
N will have be augmented with 
T (as in Tangent) to a mass cell 
edge, defined positive in the
k cross N direction.
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What is the C-grid staggering?

mass point

northward velocity point

eastward velocity point

vorticity point

The orthogonality constraint requires the line connecting two mass points to be 
orthogonal to the shared edge (and thus parallel to the projected velocity component.

Define all prognostic velocity 
points as N (as in Normal) to a 
mass cell edge. In order to 
construct a full velocity vector, 
N will have be augmented with 
T (as in Tangent) to a mass cell 
edge, defined positive in the
k cross N direction.
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For clarity, let’s simplify to the shallow-water equations.

 

∂h
∂t

+∇i h

u( ) = 0

 
ω =

ki ∇ ×


u( )

η =ω + f

 

∂

u
∂t

+ ω + f( )

k ×

u = −g∇(h + hs ) −

1
2
∇

u 2

hs

h
 
u

thickness plays the role of pressure (uniform density).

velocity is in the tangent plane.

only keep track of the vertical component of vorticity.

definition of absolute vorticity.
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The discrete mass equation:
everything with an overhat has to be defined

mass point

∂hi
∂t

=
−1
Ai

ĥj N j dl j
j=1

nedges

∑
Ai
dl j

mass cell area

cell edge length

N j

ĥj

normal velocity
points out of cell i

thickness at cell edge

i
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The discrete momentum equation:
everything with an overhat has to be defined

mass point

iForward

iBack

absolute vorticityη̂ j

dcj distance between
iForward and iBack

gh + ghs + K̂ sum of potential
and kinetic energy

T̂j
reconstructed, tangent
velocity, for here simply
state              . T̂j = f (N j )

j

∂N j

∂t
= η̂ jT̂ j − gh + ghs + K̂⎡⎣ ⎤⎦iForward − gh + ghs + K̂⎡⎣ ⎤⎦iBack{ } / dcj
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The discrete vorticity equation:
taking the curl of the momentum equation.
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Summary, 1 of 3

We developed evolution equations for mass, 
momentum and circulation in a reference frame 
following a set of particles, i.e. a Lagrangian 
reference frame.
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We developed various forms of F=ma, each with its own advantages 
and disadvantages: advective, flux-form, invariant, vor/div form.
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Summary, 2 of 3

We chose to focus on the invariant/C-grid 
combination to develop a discrete model 
of F=ma.
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We chose to focus on the invariant/C-grid 
combination to develop a discrete model 
of F=ma.

We derived the discrete counterpart to 
Kelvin’s circulation theorem in this system. ηk > 0η̂ j
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The discrete derivation developed above holds (unchanged) for any 
mesh that is locally orthogonal, including triangles, quads and 
hexagons. The relative merits of each of these meshes will be 
discussed on Tuesday.

Wednesday’s topic will more fully develop Delaunay triangulations 
and Voronoi diagrams, including the idea of applying our numerical 
methods to multi-resolution meshes.

I asserted that the discrete form of F=ma developed above offers 
precise control over the evolution of the vorticity equation 
(essentially as precise as prognosing the vorticity field itself). This 
will be more fully developed on Thursday when we discuss transport, 
monotonicity and how to determine   . η̂ j
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What is missing?
I motivated the importance of F=ma with three reasons:

1) the balance of forces is important.

2) the evolution of F=ma determines the vorticity field, 
and vorticity is of primary concern to us.

3) the evolution of F=ma determines the kinetic energy 
field, which in turn participates in the system 
energetics (i.e. the flow of energy between its kinetic, 
potential and internal forms).

Hopefully I have done justice to #1 and #2, but I have 
completely omitted #3. Bonaventura and Ringler, 2005, 
MWR, vol 133, pg 2351 discuss energetics (KE) in the 
context of the discrete method developed above.


